

Jose Luis Hoyos Service Manager Availon Iberia

1<sup>st</sup> Spanish Wind Congress

Gearbox life extension - Keep it running for a longer time -

23/06/2015

#### Who we are...



- Brand-spanning and Independent
   WTG Service Provider
- Established in 2007 in Rheine, Germany
- In continuous Growth:
- ▶ Turnover 2015: 66 M€
- More than 400 employees worldwide
- Active in Germany, Spain, Portugal, Italy, Austria, Poland and the USA
- more than 2,500 MW O&M
- Full Service competence for: Tacke<sup>®</sup> / Enron<sup>®</sup> / GE<sup>®</sup>

Vestas<sup>®</sup> Gamesa<sup>®</sup> DeWind<sup>®</sup> Nordex<sup>®</sup>  Competence Centers in Germany, Spain, Italy and USA handle the challenges which Vestas<sup>®</sup>, Gamesa<sup>®</sup> and GE<sup>®</sup> turbines can pose.

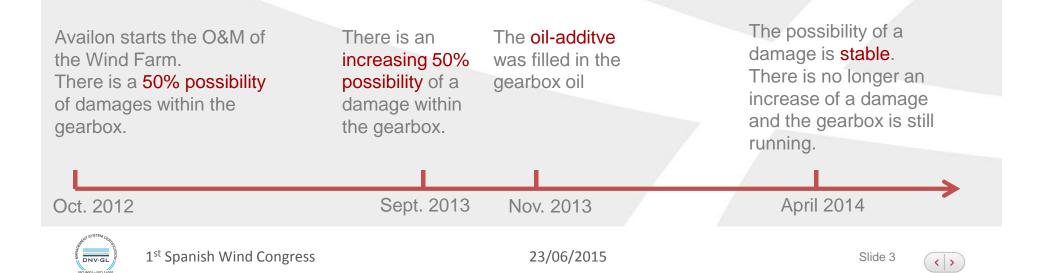
- Our team of over 35 engineers and technicians develop solutions to provide customers with the best turbine performance possible:
  - Fault analysis or advice from service technicians on recurring abnormalities.
  - Suggestions from operation managers on possible optimizations.
  - Continuous data analysis



® registered tracemarks of the respective owners



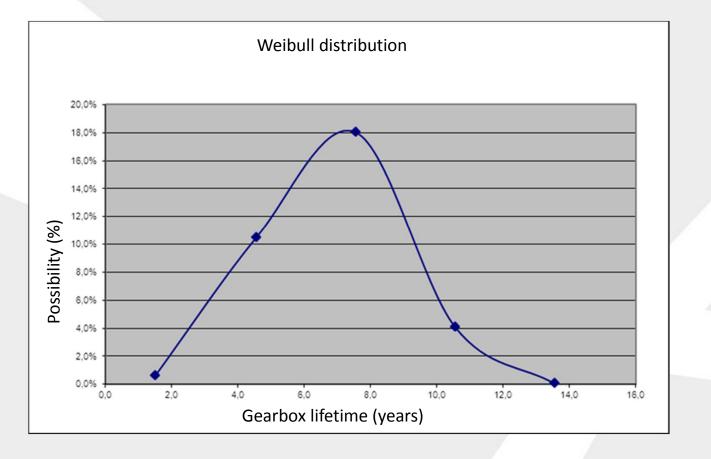
#### The case




• The gearbox is one of the most expensive components of the WTG. A damage of the gearbox leads to high costs and a long downtime of the WTG. Therefore, Availon was searching for an effective method to extend the lifetime of a gearbox. An innovative oil-additive finished the search of Availon.

#### Fact sheet:

- The oil-additive contains synthetic particles
- It has to be filled into the gearbox oil in the right proportion (typically 1/100)
- The additive has no effect on the gearbox oil or the other oil-additives


The additives are changing into a special surface on the gearbox during the operation of the turbine. In this case, a WTG of the O&M fleet of Availon has abnormalities in the gearbox. There was an increasing possibility that there will be damages within a year.





#### The aim of the oil additive...

- The aim of the product is to extend the lifetime of the gearbox
- The question the product tries to solve is if the gearbox has to be changed <u>once or twice</u> during the 20 years of life time of the WTG







#### 2012: Starting of the O&M service

- 2012: The operator gives Availon the responsibility to do the O&M of the WTG
- The inspection of the drivetrain was done at the end of 2012
- Gearbox type: GPV 451
- Last oil change: 24.10.2008
- Date of measurement: 4.12.2012
- Inspections methods: Endoscopy + frequency measurement

#### Result:

- Main shaft: No abnormalities
- **Gearbox:** The frequency methods detects abnormalities at the bearing of a planetary stage and at the outer ring of the bearing. The endoscopy verified the abnormalities at the bearing of the planetary stage.

#### The levels of the CMS measurement are as follows:

- < 5 % minimal abnormalities, no need for action
- 20% one of five abnormalities leads to a downtime of the component
- 50% one of two abnormalities leads to a downtime of the component





## 2012: CMS-report

| Gearbox<br>Gearing |                 |                                                 | Tendency      |       |
|--------------------|-----------------|-------------------------------------------------|---------------|-------|
| 31                 | Planetary stage | Signs on local form deviations on the ring gear | $\rightarrow$ | < 5 % |
| 32                 | Low stage       | Signs on local form deviations                  | $\rightarrow$ | < 5 % |
|                    |                 | Signs on local form deviations on the pinion    | $\rightarrow$ | < 5 % |
| 33                 | Fast stage      | Signs on local form deviations                  | $\rightarrow$ | < 5 % |
|                    |                 | Signs on local form deviations on pinion & gear | $\rightarrow$ | < 5 % |

| Gearbox<br>bearing |                    |                                           | Tendency      |       |
|--------------------|--------------------|-------------------------------------------|---------------|-------|
| 41                 | base               | Rolling elements, bearing                 | $\rightarrow$ | 50 %  |
| 42                 | Planets            | Rolling elements, kinematics are the same | 1             | < 5 % |
| 43                 | Low stage          |                                           |               |       |
| 44                 | Intermediate stage |                                           | $\rightarrow$ | < 5 % |
| 45 <               | Fast stage         | Internal ring                             | 1             | < 5 % |





# **2012**: The frequency result of the rolling elements

• There is a <u>50% possibility</u> that the component will have a damage within a year





# 2013: The condition of the WTG



- The yearly CMS + endoscopy inspection was done in September
- Gearbox type: GPV 451
- Last oil change: 20.02.2013
- Date of measurement: 3.09.2013
- Inspections methods: Endoscopy + frequency measurement

#### Result:

- Main shaft: No abnormalities
- **Gearbox:** There is an <u>increasing tendency</u> that the bearing of a planetary stage will have a damage within a year. The bearing of a planetary stage is not totally reachable by the endoscopy tools, therefore is the frequency method crucial. Abrasion could be also detected on the bearing of the planetary stage.

#### The levels of the CMS measurement are as follows:

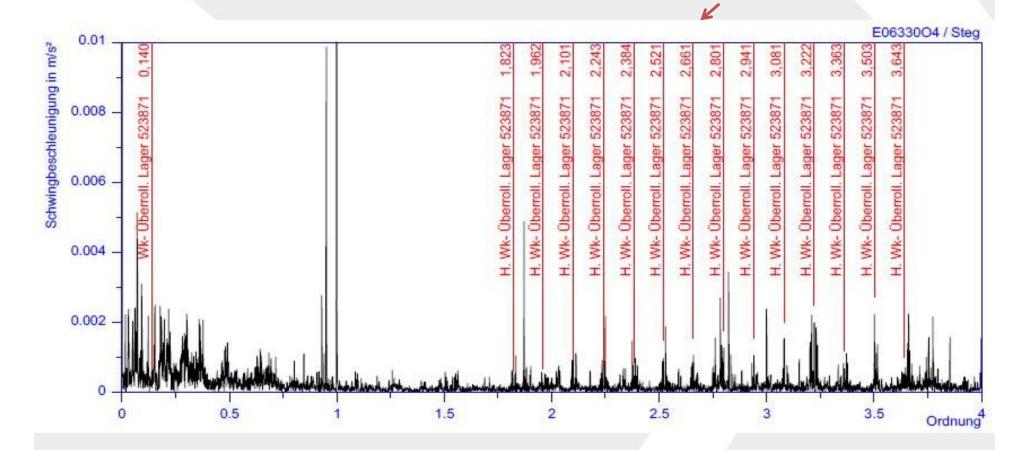
- < 5 % minimal abnormalities, no need for action
- 20% one of five abnormalities leads to a downtime of the component
- 50% one of two abnormalities leads to a downtime of the component





# 2013: CMS-report

| Gearbox<br>Gearing |                    |                                                 | Tendency      |       |
|--------------------|--------------------|-------------------------------------------------|---------------|-------|
| 31                 | Planetary stage    | Signs on local form deviations on the ring gear | $\rightarrow$ | < 5 % |
| 32                 | Low stage          | Signs on local form deviations                  | $\rightarrow$ | < 5 % |
|                    |                    | Signs on local form deviations on the pinion    | $\rightarrow$ | < 5 % |
| 33                 | Fast stage         | Signs on local form deviations                  | $\rightarrow$ | < 5 % |
|                    |                    | Signs on local form deviations on pinion & gear | $\rightarrow$ | < 5 % |
| Gearbox<br>bearing |                    |                                                 | Tendency      |       |
| 41 🤇               | base               | Rolling elements, bearing                       | 1             | 50 %  |
| 42                 | Planets            |                                                 |               |       |
| 43                 | Low stage          |                                                 |               |       |
| 44                 | Intermediate stage | Outer ring                                      | $\rightarrow$ | < 5 % |
| 45                 | Fast stage         | Rolling elements                                | •             | < 5 % |

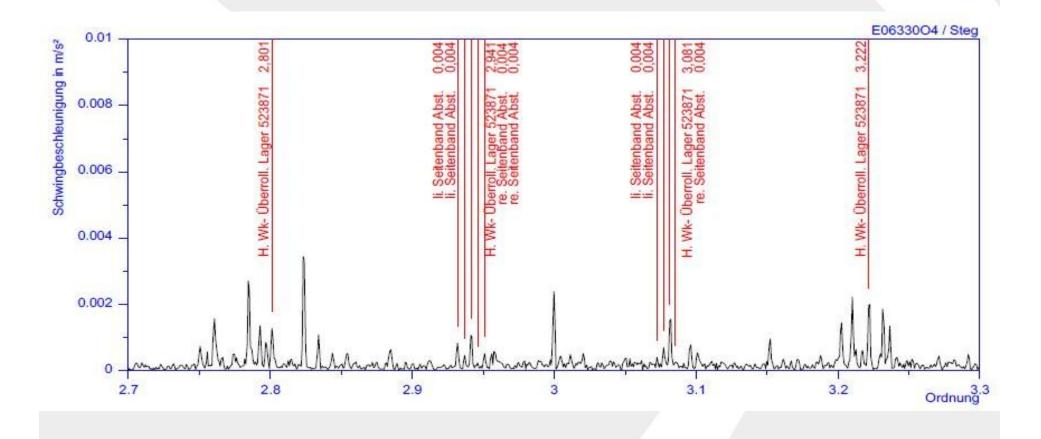



Slide 9



# 2013: The frequency result of the rolling elements

There is an increasing 50% possibility that the component will have a damage within a year. There is an increasing tendency of a damage.
Overrollings




DNV-GL BSO 9001=ISO 14001 OHSAS 18001



# **<u>2013</u>**: The frequency result of the rolling elements

There is also a possibility lower than 5% that the component (bearing) will have a damage within a year. Nevertheless, an increasing tendency of a damage was detected by the CMS







# 26/11/2013

# The oil-additive was filled in the gearbox oil



1<sup>st</sup> Spanish Wind Congress

23/06/2015

Slide 12



# 2014: The condition of the WTG



- The yearly CMS + endoscopy inspection was done in September
- Gearbox type: GPV 451
- Last oil change: 20.02.2013
- Date of measurement: 11.04.2014
- Inspections methods: Endoscopy + frequency measurement

#### Result:

- Main shaft: No abnormalities
- **Gearbox:** There is no increase of the tendency of the bearing of a planetary stage . The possibility of a damage within a year is stable by 50%. The endoscopy can't detect this gravity of damages. The base bearing is not totally reachable by the endoscopy tools, therefore is the frequency method crucial.

#### The levels of the CMS measurements are as follows:

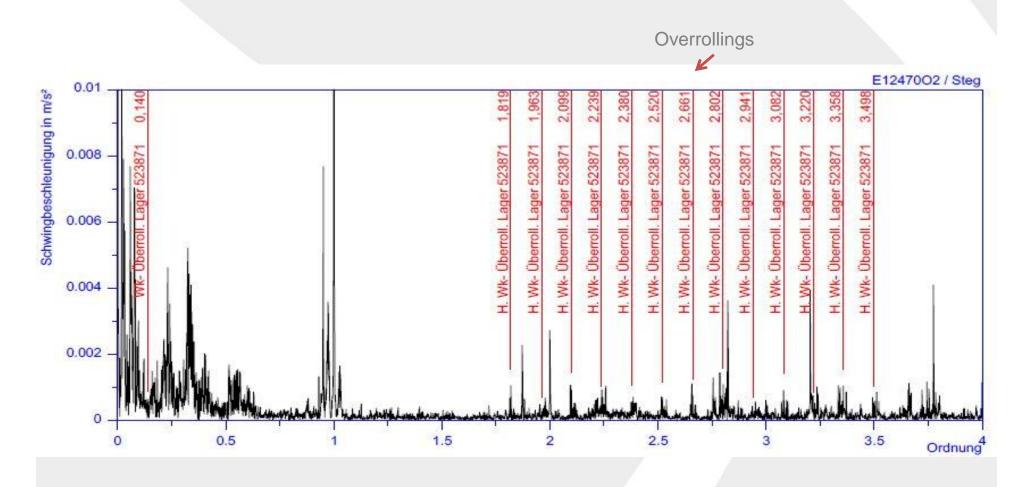
- < 5 % minimal abnormalities, no need for action
- 20% one of five abnormalities leads to a downtime of the component
- 50% one of two abnormalities leads to a downtime of the component





# 2014: CMS-report

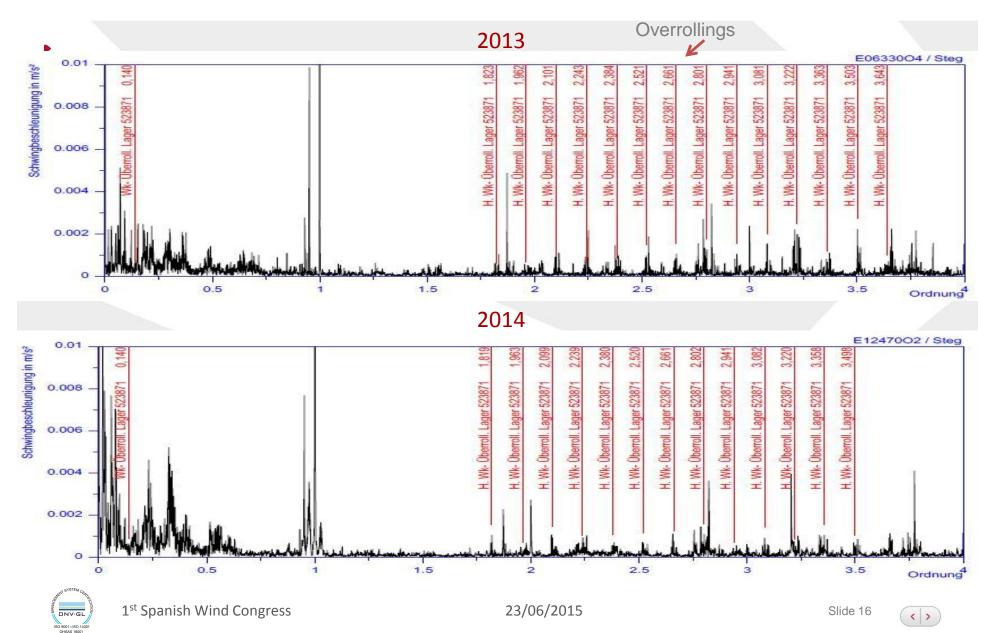
| Gearbox<br>Gearing |                 |                                                 | Tendency      |       |
|--------------------|-----------------|-------------------------------------------------|---------------|-------|
| 31                 | Planetary stage | Signs on local form deviations on the ring gear | $\rightarrow$ | < 5 % |
| 32                 | Low stage       | Signs on local form deviations                  | $\rightarrow$ | < 5 % |
|                    |                 | Signs on local form deviations                  | $\rightarrow$ | < 5 % |
| 33                 | Fast stage      | Signs on local form deviations                  | $\rightarrow$ | < 5 % |
|                    |                 | Signs on local form deviations                  | $\rightarrow$ | < 5 % |
|                    |                 |                                                 |               |       |


| Gearbox<br>bearing |                    |                                           | Tendency      |       |
|--------------------|--------------------|-------------------------------------------|---------------|-------|
| 41                 | base               | Rolling elements, bearing                 | $\rightarrow$ | 50 %  |
| 42                 | Planets            | Rolling elements, kinematics are the same | $\rightarrow$ | < 5 % |
| 43                 | Low stage          |                                           |               |       |
| 44                 | Intermediate stage |                                           | $\rightarrow$ | < 5 % |
| 45 <               | Fast stage         | Internal ring                             | $\rightarrow$ | < 5 % |





# **<u>2014</u>**: The frequency result of the rolling elements


• The increase of the damaged was stopped after the use of the oil-additive.







#### 2014 vs 2013: Comparison of the CMS-reports







It was possible to stop the increase of the damage. The damage of the gearbox was prevented by the use of the oil-additive so far. The last CMS-report of Sept. 2014 shows a stable condition of the components (base bearing: 50% possibility of a damage, no increase).

The lifetime of the gearbox could be extended by the oil-additive. There was no probable downtime in the profitable Winter and the gearbox is still running by the time we prepare this paper (status: April 2015).

Availon has included this method as a standard tool in the life extension of gearboxes in all our fleet under O&M.







Thank you for your attention.

